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ABSTRACT
Multi-cutter turning systems bear huge potential in increas-

ing cutting performance. In this study we show that the stable
parameter region can be extended by the optimal tuning of sys-
tem parameters. The optimal parameter regions can be identified
by means of stability charts. Since the stability boundaries are
highly sensitive to the dynamical parameters of the machine tool,
the reliable exploitation of the so-called stability pockets is lim-
ited. Still, the lower envelope of the stability lobes is an appro-
priate upper boundary function for optimization purposes with
an objective function taken for maximal material removal rates.
This lower envelope is computed by the Robust Stability Compu-
tation method presented in the paper. It is shown in this study,
that according to theoretical results obtained for optimally tuned
cutters, the safe stable machining parameter region can signifi-
cantly be extended, which has also been validated by machining
tests.

INTRODUCTION
Multi-cutter turning heads are used in industry for producing

cylindrical parts in order to increase machining productivity via
high material removal rate (MRR). Nevertheless, high accuracy
can only be achieved, if the cutting process is stable, namely, if
it is free of harmful chatter vibrations [1, 2, 3, 4].

Stability of machining operations is usually represented on
so-called lobe-diagrams in the plane spanned by the parameters

w as width of cut and Ω as spindle speed of the workpiece [5,6].
Typically, the boundary curves divide the parameter plane into
stable (below curve) and unstable (above curve) regions.

The continuous increase of productivity is the major objec-
tive function set by industry. Thus, in order to assure high mate-
rial removal rates [7], the regions in the vicinity of the intersec-
tion points of two adjacent lobes, the so-called stability pockets
are usually exploited for machining. However, difficulties occur
if the parameters, the stability computations are based on, are
subjected to uncertainties, due to the high sensitivity of the stabil-
ity boundary curves to the dynamical parameters of the machine
tool. The vertical asymptotes of the stability lobes, for example,
are strongly influenced by the precise values of the natural fre-
quencies of the cutters, thus, the horizontal position of the lobes
determining the location of the pockets along the spindle speed
parameter is reliable in a limited way only.

Nevertheless, it is an essential requirement to avoid unstable
parameter regions, so a more promising solution is provided by
selecting machining points far off the boundary of stability not
even risking the emergence of harmful chatter vibrations during
machining. In order to assure high MRR values and stable ma-
chining at the same time, stability boundaries have to be shifted
up together with their lower envelope as much as practically pos-
sible. Among other essential methods, optimal tuning of system
parameters can lead to significant extension of the safe stable
parameter region. Some of the corresponding theoretical back-
ground was already shown in [8].
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In this study the Robust Stability Computation Method is ap-
plied for the computation of the aforementioned lower envelope
curve. Stability computation for the applied mechanical model
predicted an optimal value for the stiffness ratio of two turning
tools. Experimental validation of theoretical results is given in
this paper, too.

STABILITY OF 2-CUTTER TURNING OPERATIONS
In the applied mechanical model (see Fig.1), for sake of

simplicity, we consider the tools to be flexible only in feed di-
rection, which implies that the equations of motion are delay-
differential equations. This can be derived from the phenomenon
of the well-known surface regeneration effect with certain mod-
ifications. This phenomenon originates in the fact, that the chip
thickness is influenced by the instantaneous position of the tool
and also by the position of the other tool half a revolution before.
The single cutter regenerative model for orthogonal turning with
one degree of freedom can be found for example in [9], from
which the model of a multi-cutter turning system can be derived
(see details in [8]).
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FIGURE 1. MECHANICAL MODEL OF THE 2-CUTTER SYS-
TEM.

The equation of motion for a 2-cutter case has the following
form:

M
[

ẍ1(t)
ẍ2(t)

]
+C

[
ẋ1(t)
ẋ2(t)

]
+K

[
x1(t)
x2(t)

]
=

kw

([
v f τ

v f τ

]
+

[
x2(t− τ)
x1(t− τ)

]
−
[

x1(t)
x2(t)

]) (1)

where x = [x1 x2]
T is the vector of the coordinates representing

the motion of the cutters in feed direction, M is the mass matrix,
C is the damping matrix, K is the stiffness matrix. In the right
hand side, kw = kfw is the so-called cutting coefficient, kf is the
derivative of the cutting force with respect to the chip thickness
in case of unit chip width w and stationary cutting parameters.
The static component of the cutting force is determined by the
feed velocity vf. The time-delay τ is inversely proportional to the
spindle speed Ω. In the chosen mechanical model, the cutters are
considered to be dynamically decoupled, so the matrices M, C,
K are diagonal. The diagonal elements of the damping matrix C
are ci = 2ζi

√
miki belonging to the corresponding tools (i = 1,2),

where ζi is the damping ratio.
Let us assume the vector of general coordinates in the fol-

lowing form: x(t) = x0+u(t), where x0 is the stationary solution
of the differential Eq.(1) and u(t) is the small perturbation around
the stationary state. After substituting the trial solution into the
perturbed form of Eq.(1) in the exponential form u(t) = Ae−λ t

with complex coefficient vector A and characteristic exponent λ ,
one obtains the characteristic equation as a determinant:

D(λ ) = det
(

Mλ
2 +Cλ +K+ kwI− kw

[
0 e−λτ

e−λτ 0

])
= 0,

(2)
where I is the unit matrix. On the stability boundary, the charac-
teristic exponents are pure imaginary: λ = iωc, where ωc is the
chatter frequency.

STABILITY AND ROBUST STABILITY
Stability boundaries are computed based on the D-

subdivision method, where the real and imaginary parts of the
characteristic equation are analysed [9]. Parameters Ω and w of
the stability chart and the unknown chatter frequency ωc form the
parameter set of the following system of non-linear equations:

Re(D(w,Ω,ωc)) = 0 , (3)
Im(D(w,Ω,ωc)) = 0 . (4)

Eq.(3) and (4) represent a co-dimension 2 problem in the space
of 3 parameters, which can be solved efficiently with the Multi-
Dimensional Bisection Method (MDBM). This is a fast algo-
rithm able to find all the roots automatically [10, 11]. The
MDBM method provides the gradients of Eq.(3) and (4) along
the boundary curves, which allows the computation of the so-
called instability gradients [12]. This shows, which region along
the boundary curves has a higher number of unstable character-
istic exponents. Trivially, the points belonging to width of cut
value w = 0 are stable, thus one can deduce the stable and unsta-
ble regions.
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The resulting stability boundaries are presented by black
lines and the stable regions are shaded gray in Fig.2 for a 2-cutter
system with different dynamic parameters for each cutter, based
on the idealized system parameters of the experimental fixture
presented in the subsequent section.

The D-subdivision method requires the exact model of the
mechanical system and does not take into account the uncertainty
of the input parameters. Inaccurate natural frequency and spindle
speed can endanger safe machining in the stability pockets, since
they severely influence the horizontal position of the machining
parameter points relative to the lobe curves. To eliminate the
risk of sliding into an unstable machining parameter domain, in
industrial applications, one has to be aware of the lower envelope
of the stability boundaries, which can, for instance, be computed
by the Robust Stability Computation Method [13]. The main
steps of this method are summarized below.

A new additional parameter is introduced, φ := τωc, the so-
called regenerative phase shift. This defines the phase shift be-
tween the current position x(t) and the delayed position x(t−τ).
This parameter φ can be used to characterize the uncertainty in
the time delay parameter caused by the fluctuations in the spindle
speed. It is considered to be an independent extra parameter in
the exponential term in Eq.(3),(4):

D(w,Ω,ωc,φ) =det
(
Mλ

2 +Cλ +K+ kwI− kw[
0 e−iφ

e−iφ 0

])
= 0 .

(5)

The resultant co-dimension 2 problem in the extended 4 dimen-
sional parameter space defines a surface. The robust stability
limit is determined by the envelope of this surface, where the
normal vectors of the surface segments are perpendicular to the
ωc axis. It was found, that in the vicinity of these parameter
points, the real parts of the roots λ of the characteristic equation
Eq.(5) do not change as a function of the perturbation parameter
(for details see [13]). This condition can be described as follows:

Re
(

∂λ

∂φ

)
= 0 . (6)

Based on the implicit derivation of Eq.(5) (see in [9]), a straight-
forward calculation leads to

Im

(
∂D(ωc)

∂ωc

∂D(ωc)

∂φ

)
= 0 , (7)

which defines the robust stability limit.
The MDBM is an appropriate tool to solve the resultant co-

dimension 3 problem in the extended 4 dimensional parameter

space (Ω,w,ωc,φ ), because its application is automatic and more
efficient than the usage of other existing methods like continua-
tion or brute force methods. Due to high computation efficiency
of the MDBM [10], the robust stability limit is determined within
a few seconds.

The resultant robust stability limits are presented with blue
lines in Fig.2. Multiple solutions for the above system of equa-
tions exist, but the robust stability limit is only represented by the
lowest envelope curve. It can furthermore be seen, that the robust
stability limit is independent of the spindle speed. Note, that this
property is true only in the special case when process damping
is not taken into consideration in the model. However, the Ro-
bust Stability Computation Method works for envelope curves of
arbitrary shape, too.

FIGURE 2. STABILITY CHART AND THE ROBUST STABILITY
LIMIT OF THE DETUNED SYSTEM WITH NORMALIZED PA-
RAMETERS: m1 = m2 = 11 kg, k1 = 14.5 N/µm, k2 = 7.032 N/µm,
ζ1 = ζ2 = 0.66 %, kf = 237 N/mm2

OPTIMAL DETUNING
Our main goal is to find the optimal stiffness parameters of

the multi-cutter turning system for which the safe stable param-
eter region is maximal. Our practical experience shows that one
can adjust the stiffness of the cutters with simple engineering
solutions, while the other dynamical parameter values are not
affected much. In this respect, the stiffness ratio β := k2/k1 is
a relevant parameter which is to be analyzed. Only k2 < k1 is
of interest, since we assume the machine tool to be built with
the maximal achievable stiffness and in practice we can only de-
crease the stiffness value. For this optimization procedure, the
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relative damping ratio is assumed to be unchanged. Robust sta-
bility limits for different β values are presented in Fig.3.

It can be proved, that for a 2-cutter turning system where
k1 = k2, the robust stability limit remains the same as for the 1-
cutter case, its analytic formula is given by wRS = 2ζ (1+ζ )k1/kf
(see [9]); with parameters used in Fig.3, this gives wRS = 0.813
mm. In the same figure it is visible that there exists an optimal
value for the stiffness ratio, where the robust stability boundary
is maximal. For the given dynamical parameters, this optimal
value can be obtained from Fig.3: βopt = k2/k1 = 0.485, where
wRS = 3.63 mm. This means an increase of the robustly stable
width of cut limit of 447 %.

FIGURE 3. ROBUST STABILITY LIMIT OF DETUNED SYSTEM
AS A FUNCTION OF STIFFNESS RATIO WITH PARAMETERS:
m1 = m2 = 11 kg, k2 = 14.5 N/µm, ζ1 = ζ2 = 0.66 %, kf = 237 N/mm2

Experimental validation
A 2-cutter fixture structure was designed and built for the

validation of the theoretical results, see Fig.4. The structure
was symmetric and could be detuned for the stiffness param-
eters. The corresponding dynamical parameters of the system
were identified by standard modal testing methods [14,15]. Cut-
ting tests were performed in order to monitor stable and unstable
machining points. The chatter vibration was detected by piezo-
accelerometers placed on the different branches of the fixture
close to the tool tips [16]. Measurement points are presented
for the symmetric case in Fig.5 and for the detuned case in Fig.6.
Unstable points are denoted with red crosses, stable points with
green circles and marginal points with purple diamonds. For the
symmetric two-cutter system with fitted dynamic parameters ob-
tained by modal testing, the computed theoretical robust stability

limit is wRS = 0.8 mm and for the detuned two-cutter system it
is wRS = 3.6 mm, which is an improvement in stability of a fac-
tor of 4. In practice, it is nearly impossible to create a fixture
for two cutters, which is able to eliminate physical coupling. Al-
though this physical coupling may require improvement in the
modelling, still, the measurement points and the theoretical re-
sults show good correlation.

FIGURE 4. TWO-CUTTER TEST FIXTURE

FIGURE 5. STABILITY CHART, MEASUREMENT POINTS AND
THE ROBUST STABILITY LIMIT OF THE SYMMETRIC SYSTEM
WITH PARAMETERS: m1 = 10.778 kg, m2 = 11.118 kg, k1 = 14.2
N/µm, k2 = 14.7 N/µm, ζ1 = 0.65 %, ζ2 = 0.67 %, kf = 237 N/mm2
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FIGURE 6. STABILITY CHART, MEASUREMENT POINTS AND
THE ROBUST STABILITY LIMIT OF THE DETUNED SYSTEM
WITH PARAMETERS: m1 = 5.2 kg, m2 = 8.57 kg, k1 = 4.11 N/µm,
k2 = 2.6 N/µm, ζ1 = 6.86 %, ζ2 = 4.09 %, kf = 237 N/mm2

CONCLUSION
The safe stability limit of a 2-cutter turning process is rep-

resented by the maximal chip width value wRS, below which the
machining is stable for all spindle speeds. The objective of this
study was to optimize the process with respect to the maximal ro-
bustly stable parameter domain. The safe stability limit for sym-
metrical and detuned 2-cutter turning systems was computed by
means of a Robust Stability Computation Method. It was shown,
that for practically relevant applications, there exists an optimal
stiffness ratio βopt for the detuned system, which was calculated.
Cutting tests were carried out, the results of which validated the
increase of the safe stability limits for the multi-cutter turning
process.
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